AI in agriculture leverages technologies like machine learning, computer vision, and data analytics to optimize farming practices, crop management, and resource utilization. It enables tasks such as automated monitoring, disease detection, yield prediction, and precision farming, leading to increased efficiency, improved productivity, and sustainable agriculture practices.
Researchers from South China Agricultural University introduce a cutting-edge computer vision algorithm, blending YOLOv5s and StyleGAN, to improve the detection of sandalwood trees using UAV remote sensing data. Addressing the challenges of complex planting environments, this innovative technique achieves remarkable accuracy, revolutionizing sandalwood plantation monitoring and advancing precision agriculture.
Researchers demonstrate the transformative potential of agricultural digital twins (DTs) using mandarins as a model crop, showcasing how data-driven decisions at the individual plant level can enhance precision farming, optimize resource allocation, and improve fruit quality, ultimately leading to a paradigm shift in agriculture towards individualized farming practices.
Researchers developed a comprehensive system leveraging IoT and cloud computing to monitor and predict drinking water quality in real-time. The system integrates sensors, microcontrollers, web servers, and machine learning models to collect, transmit, analyze, and predict water quality parameters. Machine learning algorithms, particularly decision trees, achieved high accuracy in predicting drinkability, demonstrating the system's potential to enhance water safety and contribute to achieving Sustainable Development Goals.
Researchers from the UK, Ethiopia, and India have developed an innovative robotic harvesting system that employs deep learning and computer vision techniques to recognize and grasp fruits. Tested in both indoor and outdoor environments, the system showcased promising accuracy and efficiency, offering a potential solution to the labor-intensive task of fruit harvesting in agriculture. With its adaptability to various fruit types and environments, this system holds promise for enhancing productivity and quality in fruit harvesting operations, paving the way for precision agriculture advancements.
Researchers introduce an innovative path-planning algorithm for unmanned aerial vehicles (UAVs) based on the butterfly optimization algorithm (BOA). Their approach, enhanced with an intelligent throwing agent and multi-level environment modeling, outperforms existing methods in terms of path length, energy consumption, obstacle avoidance, and computation time. The study showcases the algorithm's potential applications in various fields, including surveillance, rescue missions, and agriculture, while also suggesting avenues for future research to enhance its adaptability and realism.
Researchers introduce MFWD, a meticulously curated dataset capturing the growth of 28 weed species in maize and sorghum fields. This dataset, essential for computer vision in weed management, features high-resolution images, semantic and instance segmentation masks, and demonstrates promising results in multi-species classification, showcasing its potential for advancing automated weed detection and sustainable agriculture practices.
Researchers propose a groundbreaking data-driven approach, employing advanced machine learning models like LSTM and statistical models, to predict the All Indian Summer Monsoon Rainfall (AISMR) in 2023. Outperforming conventional physical models, the LSTM model, incorporating Indian Ocean Dipole (IOD) and El Niño-Southern Oscillation (ENSO) data, demonstrates a remarkable 61.9% forecast success rate, highlighting the potential for transitioning from traditional methods to more accurate and reliable data-driven forecasting systems.
Scientists present a groundbreaking study published in Scientific Reports, introducing an intelligent transfer learning technique utilizing deep learning, particularly a convolutional neural network (CNN), to predict diseases in black pepper leaves. The research showcases the potential of advanced technologies in plant health monitoring, offering a comprehensive approach from dataset acquisition to the development of deep neural network models for early-stage leaf disease identification in agriculture.
Duke University researchers present a groundbreaking dataset of Above-Ground Storage Tanks (ASTs) using high-resolution aerial imagery from the USDA's National Agriculture Imagery Program. The dataset, with meticulous annotations and validation procedures, offers a valuable resource for diverse applications, including risk assessments, capacity estimations, and training object detection algorithms in the realm of remotely sensed imagery and ASTs.
Researchers introduce METEOR, a deep meta-learning methodology addressing diverse Earth observation challenges. This innovative approach adapts to different resolutions and tasks using satellite data, showcasing impressive performance across various downstream problems.
Researchers present a groundbreaking integrated agricultural system utilizing IoT-equipped sensors and AI models for precise rainfall prediction and fruit health monitoring. The innovative approach combines CNN, LSTM, and attention mechanisms, demonstrating high accuracy and user-friendly interfaces through web applications, heralding a transformative era in data-driven agriculture.
Researchers propose an AI-powered posture classification system, employing MoveNet and machine learning, to address ergonomic challenges faced by agricultural workers. The study demonstrates the feasibility of leveraging AI for precise posture detection, offering potential advancements in safety practices and worker health within the demanding agricultural sector.
Researchers propose an AI-powered robotic crop farm, Agrorobotix, utilizing deep reinforcement learning (DRL) for enhanced urban agriculture. Tested in simulated conditions, Agrorobotix showcased a 16.3% increase in crop yield, 21.7% reduced water usage, and a 33% decline in chemical usage compared to conventional methods, highlighting its potential to transform urban farming, improve food security, and contribute to smart city development.
Researchers proposed a hybrid optimization approach, combining Artificial Neural Network (ANN) and Genetic Algorithm (GA), to enhance plastic injection molding. Addressing quality, production efficiency, and sustainability, the method demonstrated effectiveness in achieving global multi-objective optimization, providing a valuable tool for smart, sustainable, and economically efficient production processes.
This research delves into the synergy of Artificial Intelligence (AI) and Internet of Things (IoT) security. The study evaluates and compares various AI algorithms, including machine learning (ML) and deep learning (DL), for classifying and detecting IoT attacks. It introduces a novel taxonomy of AI methodologies for IoT security and identifies LSTM as the top-performing algorithm, emphasizing its potential applications in diverse fields.
Researchers present a novel microclimate model for precision agriculture in Bergamo, Italy, blending neural networks and physical modeling. Assessing the impact of global (ERA5) versus local (ARPA) climate data, the model achieved high accuracy in temperature predictions, emphasizing the role of neural networks in capturing intricate variations. The study contributes valuable insights for optimizing input data in microclimate modeling, vital for informed decision-making in precision agriculture.
This article introduces a novel machine learning approach for non-invasive broiler weight estimation in large-scale production. Utilizing Gaussian mixture models, Isolation Forest, and OPTICS algorithm in a two-stage clustering process, the researchers achieved accurate predictions of individual broiler weights. The comprehensive methodology, combining polynomial fitting, gray models, and adaptive forecasting, offers a promising and cost-effective solution for precise broiler weight monitoring in large-scale farming setups, as evidenced by considerable accuracy in evaluations across 111 datasets.
Researchers introduce a pioneering approach to swarm robotics, leveraging blockchain technology for decentralized economic incentives. The study demonstrates the feasibility and advantages of a blockchain-based information marketplace, fostering cooperation and penalizing misinformation among robots with conflicting interests in open swarms. This innovation holds promise for real-world applications beyond robotics, ushering in a new era of decentralized, trustless networks inspired by the intersection of swarm robotics and blockchain technology.
This study presents an innovative method for predicting individual Chinese cabbage harvest weight using unmanned aerial vehicles (UAVs) and multi-temporal features. By automating plant detection with an object detection algorithm and leveraging various UAV data sources, the study achieves accurate and early predictions, addressing limitations in existing methods and offering valuable insights for precision agriculture and crop management.
This study introduces an innovative framework for early plant disease diagnosis, leveraging fog computing, IoT sensor technology, and a novel GWO algorithm. The hybrid approach, incorporating deep learning models like AlexNet and GoogleNet, coupled with modified GWO for feature selection, demonstrates superior performance in plant disease identification.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.