A neural network is a computational model inspired by the structure and function of the human brain. It consists of interconnected artificial neurons that process and transmit information, enabling machine learning tasks such as pattern recognition, classification, and regression by learning from labeled data.
The Laplacian correlation graph (LOG) significantly improves stock trend prediction by modeling price correlations. Experimental results show superior accuracy and returns, highlighting LOG's potential in real-world investment strategies.
A study introduces advanced deep learning models integrating DenseNet with multi-task learning and attention mechanisms for superior English accent classification. MPSA-DenseNet, the standout model, achieved remarkable accuracy, outperforming previous methods.
Researchers in Digital Chemical Engineering applied six machine learning algorithms to predict the solubility of salicylic acid in 13 solvents, achieving high accuracy. The random forest (RF) algorithm outperformed others with the lowest total error, showcasing the efficacy of ML in pharmaceutical applications.
A novel approach integrates deep learning with geotechnical knowledge to predict the stochastic thermal regime of permafrost embankments. Validated against real data, this method enhances accuracy and reduces computational costs, proving effective for diverse environmental conditions.
A systematic review in the journal Sensors analyzed 77 studies on facial and pose emotion recognition using deep learning, highlighting methods like CNNs and Vision Transformers. The review examined trends, datasets, and applications, providing insights into state-of-the-art techniques and their effectiveness in psychology, healthcare, and entertainment.
Researchers evaluated deep learning models for waste classification in smart cities, with ResNeXt-101 emerging as the top performer. The study suggests a federated learning framework to enhance trash detection across diverse environments, leveraging multiple CNN models for improved efficiency in waste management.
Researchers in Nature Communications introduced SchNet4AIM, a model integrating SchNet for molecule interpretation with local quantum descriptors. This approach accurately predicts atomic charges and interaction energies while maintaining computational efficiency and interpretability, offering insights into complex chemical phenomena.
In their Agronomy journal article, researchers developed a method using RGB-D images and the YOLO-banana neural network to non-destructively localize and estimate the weight of banana bunches in commercial orchards.
Researchers developed an advanced automated system for early plant disease detection using an ensemble of deep-learning models, achieving superior accuracy on the PlantVillage dataset. The study introduced novel image processing and data balancing techniques, significantly enhancing model performance and demonstrating the system's potential for real-world agricultural applications.
Researchers introduced biSAMNet, a cutting-edge model integrating word embedding and deep neural networks, for classifying vessel trajectories. Tested in the Taiwan Strait, it significantly outperformed other models, enhancing maritime safety and traffic management.
Researchers from China have integrated computer vision (CV) and LiDAR technologies to improve the safety and efficiency of autonomous navigation in port channels. This innovative approach utilizes advanced path-planning and collision prediction algorithms to create a comprehensive perception of the port environment, significantly enhancing navigation safety and reducing collision risks.
Researchers developed and validated machine learning models for predicting turbulent combustion speed in hydrogen-natural gas spark ignition engines, showcasing their superiority over traditional methods. By leveraging data from a MINSEL 380 engine and employing techniques like random forest and artificial neural networks, the study demonstrated high forecasting accuracy, making these models valuable for industrial applications such as engine monitoring and simulation tools.
Researchers utilized machine learning algorithms to predict life satisfaction with high accuracy (93.80%) using data from a Danish government survey. By identifying 27 key questions and employing models such as KNN, SVM, and Bayesian networks, the study highlighted the significant impact of health conditions on life satisfaction and made the best predictive model publicly available.
Researchers in Nature explore the application of deep learning to analyze plasma plume dynamics in pulsed laser deposition (PLD). Using ICCD image sequences, a (2 + 1)D convolutional neural network correlates plume behavior with deposition conditions, enabling real-time monitoring and predictive insights for optimizing thin film growth.
DeepCNT-22, a machine learning force field, powers simulations revealing the atomic-level dynamics of SWCNT formation. It challenges conventional growth models, highlighting stochastic defects and conditions for defect-free growth.
Researchers demonstrated a novel approach to structural health monitoring (SHM) in seismic contexts, combining self-sensing concrete beams, vision-based crack assessment, and AI-based prediction models. The study showed that electrical impedance measurements and the AI-based Prophet model significantly improved the accuracy of load and crack predictions, offering a robust solution for real-time SHM and early warning systems.
Researchers combined density functional theory (DFT) with machine learning (ML) to screen 41,400 metal halide perovskites (MHPs), identifying 10 promising candidates with improved stability and optoelectronic properties. Highlighting CsGe0.3125Sn0.6875I3 and CsGe0.0625Pb0.3125Sn0.625Br3, this study offers a new framework for optimizing perovskites for solar cells.
Researchers developed advanced deep learning (DL)-based automatic feature recognition (AFR) methods that significantly enhance computer-aided design (CAD), process planning (CAPP), and manufacturing (CAM) integration. Their approach, using the multidimensional attributed face-edge graph (maFEG) and Sheet-metalNet, a graph neural network, improves recognition accuracy and adapts to evolving datasets, addressing limitations of traditional and voxelized representations.
Researchers developed a deep learning and particle swarm optimization (PSO) based system to enhance obstacle recognition and avoidance for inspection robots in power plants. This system, featuring a convolutional recurrent neural network (CRNN) for obstacle recognition and an artificial potential field method (APFM) based PSO algorithm for path planning, significantly improves accuracy and efficiency.
Researchers presented a novel dual-branch selective attention capsule network (DBSACaps) for detecting kiwifruit soft rot using hyperspectral images. This approach, detailed in Nature, separates spectral and spatial feature extraction, then fuses them with an attention mechanism, achieving a remarkable 97.08% accuracy.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.