AI in agriculture leverages technologies like machine learning, computer vision, and data analytics to optimize farming practices, crop management, and resource utilization. It enables tasks such as automated monitoring, disease detection, yield prediction, and precision farming, leading to increased efficiency, improved productivity, and sustainable agriculture practices.
Researchers have developed an advanced machine learning model utilizing long short-term memory (LSTM) to improve the accuracy of predicting extreme rainfall events in Rwanda. This model offers significant insights for climate adaptation and disaster management, especially amid escalating severe weather conditions.
Researchers applied deep learning (DL) models, including ResNet-34, to segment canola plants from other species in the field, treating non-canola plants as weeds. Using datasets containing 3799 canola images, the study demonstrated that ResNet-34 achieved superior performance, highlighting its potential for precision agriculture and innovative weed control strategies.
Researchers compared traditional feature-based computer vision methods with CNN-based deep learning for weed classification in precision farming, emphasizing the former's effectiveness with smaller datasets
Researchers in a recent Smart Agricultural Technology study demonstrated how integrating machine learning (ML) and AI vision into all-terrain vehicles (ATVs) revolutionizes precision agriculture. These technologies automate tasks such as planting and harvesting, enhancing decision-making, crop yield, and operational efficiency while addressing data privacy and scalability challenges.
Researchers developed an automated system utilizing UAVs and deep learning to monitor and maintain remote gravel runways in Northern Canada. This system accurately detects defects and evaluates runway smoothness, proving more effective and reliable than traditional manual methods in harsh and isolated environments.
In their Agronomy journal article, researchers developed a method using RGB-D images and the YOLO-banana neural network to non-destructively localize and estimate the weight of banana bunches in commercial orchards.
Integrating blockchain with the Internet of Drones (IoD) promises enhanced security, connectivity, and efficiency in drone applications like delivery, surveillance, and rescue operations.
A recent article in "Artificial Intelligence in Agriculture" reviewed machine learning (ML) techniques for detecting plant diseases in apple, cassava, cotton, and potato crops. The study highlighted the superior accuracy of convolutional neural networks (CNNs) and emphasized ML's potential to enhance crop yield and quality, despite challenges related to data quality and ethical considerations.
Researchers presented a novel dual-branch selective attention capsule network (DBSACaps) for detecting kiwifruit soft rot using hyperspectral images. This approach, detailed in Nature, separates spectral and spatial feature extraction, then fuses them with an attention mechanism, achieving a remarkable 97.08% accuracy.
Researchers introduce a novel electronic tongue (E-tongue), the multichannel triboelectric bioinspired E-tongue (TBIET), engineered with advanced triboelectric components on a single glass slide chip. Through comprehensive classification studies across medical, environmental, and beverage samples, the TBIET demonstrates exceptional taste classification accuracy, promising significant advancements in on-site liquid sample detection and analysis.
Researchers introduce BS-SCRM, a novel method combining blockchain and swarm intelligence for secure clustering routing in WSNs, addressing energy efficiency and security challenges. Simulation results demonstrate superior performance in network lifetime, energy consumption, and security compared to existing methods, offering promise for diverse applications from IoT to healthcare.
Researchers introduced a deep convolutional neural network (DCNN) model for accurately detecting and classifying grape leaf diseases. Leveraging a dataset of grape leaf images, the DCNN model outperformed conventional CNN models, demonstrating superior accuracy and reliability in identifying black rot, ESCA, leaf blight, and healthy specimens.
Researchers introduced RST-Net, a novel deep learning model for plant disease prediction, combining residual convolutional networks and Swin transformers. Testing on a benchmark dataset showed superior performance over state-of-the-art models, with potential applications in smart agriculture and precision farming.
Researchers developed an edge-computing LoRaWAN gateway for real-time confirmed messaging, significantly reducing messaging time and network server resource usage. The gateway's innovative design and hardware components optimized performance and lowered costs, making it suitable for diverse IoT applications.
Researchers propose the ISATR algorithm to optimize trajectory planning and resource allocation for UAV-assisted emergency communication. By employing cellular automata for user trajectory prediction and iterative scheduling, the algorithm effectively enhances communication quality in disaster scenarios like earthquakes.
Researchers from China proposed an innovative method to improve the accuracy of detecting small targets in aerial images captured by unmanned aerial vehicles (UAVs). By introducing a multi-scale detection network that combines different feature information levels, the study aimed to enhance detection accuracy while reducing interference from image backgrounds.
Researchers delve into the burgeoning realm of digital twins, tracing their evolution from NASA's Apollo 13 mission to diverse contemporary applications. They dissect challenges like model complexity and computational demands while advocating for universal standards and interdisciplinary collaboration to maximize digital twin potential across domains like precision medicine and urban planning.
Chinese researchers introduce a groundbreaking deep inverse convolutional neural network approach tailored for land cover remote sensing images. This novel method effectively addresses data imbalance, significantly improving classification accuracy and precision, with potential applications in urban planning, agriculture, and environmental monitoring.
Researchers investigated the potential of large language models (LLMs), including GPT and FLAN series, for generating pest management advice in agriculture. Utilizing GPT-4 for evaluation, the study introduced innovative prompting techniques and demonstrated LLMs' effectiveness, particularly GPT-3.5 and GPT-4, in providing accurate and comprehensive advice. Despite FLAN's limitations, the research highlighted the transformative impact of LLMs on pest management practices, emphasizing the importance of contextual information in guiding model responses.
Researchers delve into the evolving landscape of crop-yield prediction, leveraging remote sensing and visible light image processing technologies. By dissecting methodologies, technical nuances, and AI-driven solutions, the article illuminates pathways to precision agriculture, aiming to optimize yield estimation and revolutionize agricultural practices.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.