A Convolutional Neural Network (CNN) is a type of deep learning algorithm primarily used for image processing, video analysis, and natural language processing. It uses convolutional layers with sliding windows to process data, and is particularly effective at identifying spatial hierarchies or patterns within data, making it excellent for tasks like image and speech recognition.
AI predicts energy expenses from passive design, offering a tool for reducing the energy burden on low-income households and advancing energy justice.
Researchers introduce a lightweight enhancement to the YOLOv5 algorithm for vehicle detection, integrating integrated perceptual attention (IPA) and multiscale spatial channel reconstruction (MSCCR) modules. The method reduces model parameters while boosting accuracy, making it optimal for intelligent traffic management systems. Experimental results showcase superior performance compared to existing algorithms, promising advancements in efficiency and functionality for vehicle detection in diverse traffic environments.
Researchers unveil an upgraded version of MobileNetV2 tailored for agricultural product recognition, revolutionizing farming practices through precise identification and classification. By integrating novel Res-Inception and efficient multi-scale cross-space learning modules, the enhanced model exhibits substantial accuracy improvements, offering promising prospects for optimizing production efficiency and economic value in agriculture.
Researchers from Egypt introduce a groundbreaking system for Human Activity Recognition (HAR) using Wireless Body Area Sensor Networks (WBANs) and Deep Learning. Their innovative approach, combining feature extraction techniques and Convolutional Neural Networks (CNNs), achieves exceptional accuracy in identifying various activities, promising transformative applications in healthcare, sports, and elderly care.
A comprehensive meta-analysis and systematic review assesses AI's diagnostic accuracy in detecting fractures across various data types and imaging modalities. With 66 studies analyzed, the review underscores AI's high accuracy and reliability, especially in utilizing imaging data, while also emphasizing the need for improved transparency in study reporting and validation methods to enhance clinical applicability.
Researchers devise a cutting-edge methodology leveraging deep neural networks to forecast wildfire spread, integrating satellite imagery and weather data. The Mobile Ad Hoc Network-based model demonstrates superior accuracy, enabling long-term predictions and aiding in emergency response planning and environmental impact assessment. This adaptable framework paves the way for improved wildfire management strategies worldwide.
Researchers propose a Correlated Optical Convolutional Neural Network (COCNN) inspired by quantum neural networks (QCNN), aiming to overcome the limitations of existing optical neural networks (ONNs) and achieve algorithmic speed-up. COCNN introduces optical correlation to mimic quantum states' symmetry identification, demonstrating faster convergence and higher learning accuracy compared to conventional CNN models. Experimental validation shows COCNN's capability to perform quantum-inspired tasks, indicating its potential to bridge the gap between quantum and classical computing paradigms in information processing.
Researchers unveil RetNet, a novel machine-learning framework utilizing voxelized potential energy surfaces processed through a 3D convolutional neural network (CNN) for superior gas adsorption predictions in metal-organic frameworks (MOFs). Demonstrating exceptional performance with minimal training data, RetNet's versatility extends beyond reticular chemistry, showcasing its potential impact on predicting properties in diverse materials.
Researchers from India, Australia, and Hungary introduce a robust model employing a cascade classifier and a vision transformer to detect potholes and traffic signs in challenging conditions on Indian roads. The algorithm, showcasing impressive accuracy and outperforming existing methods, holds promise for improving road safety, infrastructure maintenance, and integration with intelligent transport systems and autonomous vehicles
Researchers present ReAInet, a novel vision model aligning with human brain activity based on non-invasive EEG recordings. The model, derived from the CORnet-S architecture, demonstrates higher similarity to human brain representations, improving adversarial robustness and capturing individual variability, thereby paving the way for more brain-like artificial intelligence systems in computer vision.
Researchers present a novel myoelectric control (MEC) framework employing Bayesian optimization to enhance convolutional neural network (CNN)-based gesture recognition systems using surface electromyogram (sEMG) signals. The study demonstrates improved accuracy and generalization, crucial for advancing prosthetic devices and human-computer interfaces, and highlights the potential for broader applications in diverse sEMG signal types and neural network architectures.
This article introduces LC-Net, a novel convolutional neural network (CNN) model designed for precise leaf counting in rosette plants, addressing challenges in plant phenotyping. Leveraging SegNet for superior leaf segmentation, LC-Net incorporates both original and segmented leaf images, showcasing robustness and outperforming existing models in accurate leaf counting, offering a promising advancement for agricultural research and high-throughput plant breeding efforts.
Scientists present a groundbreaking study published in Scientific Reports, introducing an intelligent transfer learning technique utilizing deep learning, particularly a convolutional neural network (CNN), to predict diseases in black pepper leaves. The research showcases the potential of advanced technologies in plant health monitoring, offering a comprehensive approach from dataset acquisition to the development of deep neural network models for early-stage leaf disease identification in agriculture.
Researchers unveil a groundbreaking approach to tackle escalating construction solid waste challenges through a machine vision (MV) algorithm. By automating the generation and annotation of synthetic datasets, the study significantly enhances efficiency and accuracy, demonstrating superior performance in construction waste sorting over manually labeled datasets, paving the way for sustainable urban waste management.
This paper unveils FaceNet-MMAR, an advanced facial recognition model tailored for intelligent university libraries. By optimizing traditional FaceNet algorithms with innovative features, including mobilenet, mish activation, attention module, and receptive field module, the model showcases superior accuracy and efficiency, garnering high satisfaction rates from both teachers and students in real-world applications.
Researchers harness Convolutional Neural Networks (CNNs) to enhance the predictability of the Madden-Julian Oscillation (MJO), a critical tropical weather pattern. Leveraging a 1200-year simulation and explainable AI methods, the study identifies moisture dynamics, particularly precipitable water anomalies, as key predictors, pushing the forecasting skill to approximately 25 days and offering insights into improving weather and climate predictions.
Researchers introduce the multi-feature fusion transformer (MFT) for named entity recognition (NER) in aerospace text. MFT, utilizing a unique structure and integrating radical features, outshines existing models, demonstrating exceptional performance and paving the way for enhanced AI applications in aerospace research.
In this article, researchers unveil a cutting-edge gearbox fault diagnosis method. Leveraging transfer learning and a lightweight channel attention mechanism, the proposed EfficientNetV2-LECA model showcases superior accuracy, achieving over 99% classification accuracy in both gear and bearing samples. The study signifies a pivotal leap in intelligent fault diagnosis for mechanical equipment, addressing challenges posed by limited samples and varying working conditions.
Korean researchers introduce a groundbreaking framework marrying Explainable AI (XAI) and Zero-Trust Architecture (ZTA) for robust cyberdefense in marine communication networks. Their deep neural network, Zero-Trust Network Intrusion Detection System (NIDS), not only exhibits remarkable accuracy in classifying cyber threats but also integrates XAI methodologies, SHAP and LIME, to provide interpretable insights. This innovative approach fosters transparency and collaboration between AI systems and human experts, promising enhanced cybersecurity in marine, and potentially other, critical infrastructures.
Researchers present YOLO_Bolt, a lightweight variant of YOLOv5 tailored for industrial workpiece identification. With optimizations like ghost bottleneck convolutions and an asymptotic feature pyramid network, YOLO_Bolt outshines YOLOv5, achieving a 2.4% increase in mean average precision (mAP) on the MSCOCO dataset. Specialized for efficient bolt detection in factories, YOLO_Bolt offers improved detection accuracy while reducing model size, paving the way for enhanced quality assurance in industrial settings.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.