A neural network is a computational model inspired by the structure and function of the human brain. It consists of interconnected artificial neurons that process and transmit information, enabling machine learning tasks such as pattern recognition, classification, and regression by learning from labeled data.
Researchers investigated the viability of using photoplethysmography (PPG) signals and one-dimensional convolutional neural networks (1D CNNs) for human activity recognition (HAR). Conducting experiments on 40 participants engaged in various activities, the study demonstrated high accuracy (95.14%) in classifying five common daily activities using PPG data. While promising, limitations include the homogeneity of the participant pool and potential biases in results, underscoring the need for broader studies in diverse populations.
This paper outlines a vision for advanced wearable robots integrating with the human body to enhance motor and sensory functions. Reviewing breakthrough technologies like multi-modal fusion and flexible electronics, the study proposes future research directions to improve embodiment and user interaction, fostering collaboration across disciplines for next-generation wearable robots in rehabilitation, sports, and daily activities.
Researchers present a cutting-edge framework for real-time crash risk estimation and prediction at signalized intersections, leveraging artificial intelligence and traffic conflict data. By integrating a non-stationary generalized extreme value model and a recurrent neural network, the framework offers proactive insights for safety management and countermeasure implementation, demonstrating high accuracy and potential for real-world applications.
Researchers introduce FulMAI, a cutting-edge system utilizing LiDAR, video tracking, and deep learning for accurate, markerless tracking and analysis of marmoset behavior. Achieving high accuracy and long-term monitoring capabilities, FulMAI offers valuable insights into marmoset behavior and facilitates research in brain function, development, and disease without causing stress to the animals.
AI predicts energy expenses from passive design, offering a tool for reducing the energy burden on low-income households and advancing energy justice.
Researchers introduce programmable crack array within micro-crumples (PCAM) sensors, leveraging computational design for soft robots. These sensors exhibit robustness and tunability, enabling accurate trajectory prediction and terrain awareness in real-world scenarios, thus addressing key challenges in soft robotics automation. Integrated into an origami robot with machine intelligence, PCAM sensors signify a milestone in bridging predictive design complexities and practical implementation for enhanced soft robot performance in dynamic environments.
Swiss researchers introduce Pedipulate, a novel controller trained with deep reinforcement learning, enabling quadruped robots to manipulate objects using their legs. Demonstrating robustness and versatility, Pedipulate tracks foot target points, adapts stance, and handles external disturbances, showcasing potential applications in maintenance, home support, and exploration tasks.
Researchers investigated the feasibility of using machine learning (ML) models to predict the punching shear capacity of post-tensioned ultra-high-performance concrete (UHPC) flat slabs. By proposing correction factors based on finite element method-artificial intelligence (FEM-AI/ML) techniques, they extended the validity of punching shear capacity provisions in design codes like EC2 and ACI-318 to include PT-UHPC flat slabs.
Researchers proposed a novel intrusion detection system (IDS) leveraging ensemble learning and deep neural networks (DNNs) to combat botnet attacks on Internet of Things (IoT) devices. By training device-specific DNN models on heterogeneous IoT data and aggregating predictions through ensemble averaging, the system achieved remarkable accuracy and effectively detected botnet activities. The study's structured methodology, comprehensive evaluation metrics, and ensemble approach offer promise in bolstering IoT security against evolving cyber threats.
The article discusses the application of autoencoder neural networks in archaeometry, specifically in reducing the dimensions of X-ray fluorescence spectra for analyzing cultural heritage objects. Researchers utilized autoencoders to compress data and extract essential features, facilitating efficient analysis of elemental composition in painted materials. Results demonstrated the effectiveness of this approach in attributing paintings to different creation periods based on pigment composition, highlighting its potential for automating and enhancing archaeological analyses.
Researchers introduce a lightweight enhancement to the YOLOv5 algorithm for vehicle detection, integrating integrated perceptual attention (IPA) and multiscale spatial channel reconstruction (MSCCR) modules. The method reduces model parameters while boosting accuracy, making it optimal for intelligent traffic management systems. Experimental results showcase superior performance compared to existing algorithms, promising advancements in efficiency and functionality for vehicle detection in diverse traffic environments.
Researchers developed a comprehensive system leveraging IoT and cloud computing to monitor and predict drinking water quality in real-time. The system integrates sensors, microcontrollers, web servers, and machine learning models to collect, transmit, analyze, and predict water quality parameters. Machine learning algorithms, particularly decision trees, achieved high accuracy in predicting drinkability, demonstrating the system's potential to enhance water safety and contribute to achieving Sustainable Development Goals.
Researchers proposed a novel approach utilizing a multilayer perceptron (MLP) neural network to forecast solar irradiance in Central Africa, crucial for sustainable energy development. By training the MLP model with meteorological data, including atmospheric pressure, humidity, temperature, wind speed, hour, and day, the study achieved a strong correlation (98.83%) between observed and predicted solar irradiance levels.
Researchers developed FlashNet, a hybrid AI method, to forecast lightning flashes up to 48 hours ahead, surpassing traditional NWP models. Utilizing features from high-resolution NWP data and employing deep neural networks, FlashNet demonstrated superior accuracy, reliability, and sharpness, offering valuable insights for various sectors vulnerable to lightning-related risks. The study highlights FlashNet's potential for medium-range forecasting and recommends further exploration for extending forecast horizons and addressing global applicability.
Researchers unveil an upgraded version of MobileNetV2 tailored for agricultural product recognition, revolutionizing farming practices through precise identification and classification. By integrating novel Res-Inception and efficient multi-scale cross-space learning modules, the enhanced model exhibits substantial accuracy improvements, offering promising prospects for optimizing production efficiency and economic value in agriculture.
This study presents a novel approach to landslide prediction by incorporating full seismic waveform data into a deep learning model. By leveraging a modified transformer neural network and synthetic waveforms from the 2015 Gorkha earthquake in Nepal, the researchers demonstrated significant improvements over traditional models that rely solely on scalar intensity parameters. Their findings highlight the importance of considering waveform characteristics and spatial distribution for more accurate landslide risk assessment during earthquakes, offering valuable insights for disaster risk reduction efforts.
Researchers from Egypt introduce a groundbreaking system for Human Activity Recognition (HAR) using Wireless Body Area Sensor Networks (WBANs) and Deep Learning. Their innovative approach, combining feature extraction techniques and Convolutional Neural Networks (CNNs), achieves exceptional accuracy in identifying various activities, promising transformative applications in healthcare, sports, and elderly care.
A comprehensive meta-analysis and systematic review assesses AI's diagnostic accuracy in detecting fractures across various data types and imaging modalities. With 66 studies analyzed, the review underscores AI's high accuracy and reliability, especially in utilizing imaging data, while also emphasizing the need for improved transparency in study reporting and validation methods to enhance clinical applicability.
Chinese researchers propose an innovative method utilizing transfer learning and LSTM neural networks to forecast reservoir parameters, overcoming data scarcity challenges in oil and gas exploration. By pre-training on historical data from similar geological conditions and fine-tuning on target blocks, the approach achieves superior accuracy and efficiency, demonstrating its potential for reservoir management and extending to diverse domains with data scarcity issues.
Researchers devise a cutting-edge methodology leveraging deep neural networks to forecast wildfire spread, integrating satellite imagery and weather data. The Mobile Ad Hoc Network-based model demonstrates superior accuracy, enabling long-term predictions and aiding in emergency response planning and environmental impact assessment. This adaptable framework paves the way for improved wildfire management strategies worldwide.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.