Artificial Intelligence (AI) refers to the simulation of human intelligence processes by machines, especially computer systems. These processes include learning (the acquisition of information and rules for using the information), reasoning (using rules to reach approximate or definite conclusions), and self-correction.
This study delves into the significant impact of artificial intelligence (AI) on reducing carbon emissions in the manufacturing sector. The research explores the correlation between AI adoption and carbon intensity, highlighting the role of green technological, management, and product innovation in strengthening AI's carbon reduction effect.
Researchers introduce a deep learning-based approach for long-distance face recognition, essential for security applications in smart cities. They evaluated the system's performance across various commercial image sensors, achieving accuracy rates exceeding 99 percent, offering valuable insights into sensor selection for enhanced security in smart city surveillance systems.
This study delves into the accuracy of bibliographic citations generated by AI models like GPT-3.5 and GPT-4. While GPT-4 demonstrates improvements over its predecessor with fewer fabricated citations and errors, challenges in citation accuracy and formatting persist, highlighting the complexity of AI-generated citations and the need for further enhancements.
Researchers conduct a systematic review of AI techniques in otitis media diagnosis using medical images. Their findings reveal that AI significantly enhances diagnostic accuracy, particularly in primary care and telemedicine, with an average accuracy of 86.5%, surpassing the 70% accuracy of human specialists.
Researchers have introduced SUCOLA, a groundbreaking data-driven method, in their quest to enhance food safety. SUCOLA's innovative approach leverages self-supervised learning to provide early warnings for food safety risks, making significant advancements in the field of food safety risk assessment.
Researchers from Bosch Center for Artificial Intelligence have unveiled a groundbreaking framework for flexible robotic manipulation. This system empowers robots to learn complex object-centric skills from human demonstrations and sequence them for intricate industrial assembly tasks, demonstrated effectively in the assembly of critical components of an electric bicycle (e-bike) motor.
This research paper explores the intersection of artificial intelligence (AI) and education by analyzing AI educational curricula and textbooks using text mining techniques. The study assesses the presence of key AI concepts, topic structures, and practical tools, offering valuable insights for structuring effective AI curricula and improving alignment with educational resources.
This research delves into the adoption of Artificial Intelligence (AI) in academic libraries, comparing the approaches of top universities in the United Kingdom (UK) and China. The study highlights that while Chinese universities emphasize AI in their strategies, British universities exhibit caution, with a limited focus on AI applications in libraries, and underscores the need for careful consideration of AI's role in higher education libraries, taking into account factors such as funding, value, and ethics.
Researchers introduce PointLLM, a groundbreaking language model that understands 3D point cloud data and text instructions. PointLLM's innovative approach has the potential to revolutionize AI comprehension of 3D structures and offers exciting possibilities in fields like design, robotics, and gaming, while also raising important considerations for responsible development.
This paper presents a Convolutional Neural Network (CNN) approach for classifying monkeypox skin lesions, enhanced by the Grey Wolf Optimizer (GWO). By improving accuracy and efficiency, this method aids in early disease detection, benefiting patient outcomes and public health by controlling outbreaks.
This research highlights the use of AI and open-source tools to address climate change challenges in Côte d'Ivoire's agriculture. It introduces AI models for cocoa plant health monitoring and water resource forecasting, emphasizing their potential in promoting sustainable practices and climate-resilient decision-making for farmers and policymakers.
Researchers explore the fusion of artificial intelligence, natural language processing, and motion capture to streamline 3D animation creation. By integrating Chat Generative Pre-trained Transformer (ChatGPT) into the process, it enables real-time language interactions with digital characters, offering a promising solution for animation creators.
Researchers demonstrate the potential of Artificial Intelligence (AI) and Federated Learning (FL) to predict and prevent food fraud while preserving data privacy in complex supply chains. Their framework, utilizing a data-driven Bayesian Network model, effectively integrated data from various sources and improved decision-making regarding food fraud control while upholding data confidentiality.
Researchers highlight the power of deep learning in predicting cardiac arrhythmias and atrial fibrillation using individual heartbeats from normal ECGs. The research demonstrates that focusing on discrete heartbeats significantly outperforms models relying on complete 12-lead ECGs, offering the potential for earlier diagnosis and prevention of severe complications.
This study explores recent advancements in utilizing machine learning for global weather and climate modeling, focusing on a hybrid approach that combines reservoir computing with conventional climate models. This approach shows promise in achieving both accuracy and interpretability in weather and climate emulation, paving the way for transformative applications in atmospheric science and artificial intelligence.
This article highlights the risks associated with AI deception, such as fraud and election tampering, and proposes solutions including regulation, bot-or-not laws, detection techniques, and making AI systems less deceptive. Collaboration among policymakers, researchers, and the public is emphasized to proactively address AI deception's destabilizing potential in society.
AI-driven MRI analysis leads the way in diagnosing and treating multiple sclerosis, according to a groundbreaking study led by Dr. Heidi Beadnall from the University of Sydney. The research aims to automate the extraction of crucial data like brain lesion numbers and volumes, filling a gap in real-world clinical settings and paving the way for improved patient care.
A new study led by North Carolina State University reveals that an AI capable of self-examination performs better when it opts for neural diversity over uniformity. This "meta-learning" approach makes the AI up to 10 times more accurate in complex tasks, such as predicting the motion of galaxies, compared to conventional, homogenous neural networks.
Researchers use artificial neural networks (ANN) to classify UNESCO World Heritage Sites (WHS) and evaluate the impact of input variables on classification outcomes. The study compares multilayer perceptron (MLP) and radial basis function (RBF) neural networks, highlighting the significance of feature selection and the trade-off between evaluation time and accuracy.
Researchers discuss how artificial intelligence (AI) is reshaping higher education. The integration of AI in universities, known as smart universities, enhances efficiency, personalization, and student experiences. However, challenges such as job displacement and ethical considerations require careful consideration as AI's transformative potential in education unfolds.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.