Clustering with AI involves using machine learning algorithms to group a set of data points into clusters based on their similarities, without prior knowledge of these groupings. It's a type of unsupervised learning used in various fields like market segmentation, image segmentation, and anomaly detection.
This study presents a novel approach to identifying typical car-to-powered two-wheelers (PTWs) crash scenarios for autonomous vehicle (AV) safety testing. By utilizing stacked autoencoder methods to extract embedded features from high-dimensional crash data, followed by k-means clustering, six high-risk scenarios are identified. Unlike previous research, this method eliminates manual selection of clustering variables and provides a more detailed scenario description, resulting in more robust and effective AV testing scenarios.
Researchers present CQDA, a lightweight and interpretable model for complex query answering over knowledge graphs. CQDA outperforms existing methods by achieving higher accuracy with limited training data, supporting reasoning with negations, and demonstrating data efficiency and robustness in out-of-domain evaluations.
Researchers utilize GPT-4, an advanced natural language processing tool, to automate information extraction from scientific articles in synthetic biology. Through the integration of AI and machine learning, they demonstrate the effectiveness of data-driven approaches for predicting fermentation outcomes and expanding the understanding of nonconventional yeast factories, paving the way for faster advancements in biomanufacturing and design.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.