Deep Learning is a subset of machine learning that uses artificial neural networks with multiple layers (hence "deep") to model and understand complex patterns in datasets. It's particularly effective for tasks like image and speech recognition, natural language processing, and translation, and it's the technology behind many advanced AI systems.
The European project SIGNIFICANCE, using AI and deep learning, developed a platform to combat the illegal trafficking of cultural heritage goods. By identifying, tracking, and blocking illegal online activities, the platform increased the detection of illegal artifacts by 10-15%, aiding law enforcement in safeguarding cultural heritage.
Researchers developed a deep learning (DL) approach for non-destructive crop moisture assessment using thermal imagery, focusing on five DL models. Among them, MobilenetV3 excelled in accuracy and speed, demonstrating the potential for real-time water stress monitoring in cotton agriculture, enhancing precision irrigation strategies.
Researchers introduced AE-APT, a novel deep learning-based method, for detecting advanced persistent threats (APTs) in highly imbalanced datasets. Utilizing multiple neural network variations and ensemble learning, AE-APT significantly outperformed traditional methods, effectively identifying APT activities across various operating systems with exceptional accuracy.
A review in Artificial Intelligence in Agriculture compared machine learning (ML) and deep learning (DL) for weed detection. The study found DL offers higher accuracy, while ML excels in real-time processing with smaller models, addressing challenges like visual similarity and early-stage weed control.
Researchers in Nature Communications introduced PIMMS, a deep learning-based method for imputing missing values in mass spectrometry proteomics data. Applied to an alcohol-related liver disease cohort, PIMMS identified additional proteins and improved disease progression predictions, highlighting deep learning's potential in large-scale proteomics studies.
Researchers in Scientific Reports introduced an AI-based approach to predict rice production in China using multi-source data. Hybrid models, particularly RF-XGB, outperformed single models in accuracy, emphasizing the importance of soil properties and sown area over climate variables in determining rice yields.
Researchers developed robust deep learning models to predict CO2 solubility in ionic liquids (ILs), crucial for CO2 capture. The artificial neural network (ANN) model proved more computationally efficient than the long short-term memory (LSTM) network, demonstrating high accuracy and utility in IL screening for CO2 capture applications.
Researchers introduced an advanced handover strategy for LEO satellite networks using deep reinforcement learning (DRL) and graph neural networks (GNN). This approach significantly improved communication stability and efficiency, especially in power grid scenarios, by reducing handover frequency, lowering latency, and enhancing network load balancing.
Published in Intelligent Systems with Applications, this study introduces SensorNet, a hybrid model combining deep learning (DL) with chemical sensor data to detect toxic additives in fruits like formaldehyde. SensorNet integrates convolutional layers for image analysis and sensor data preprocessing, achieving a high accuracy of 97.03% in distinguishing fresh from chemically treated fruits.
Researchers in Nature unveiled a new method for traffic signal control using deep reinforcement learning (DRL) that addresses convergence and robustness issues. The PN_D3QN model, incorporating dueling networks, double Q-learning, priority sampling, and noise parameters, processed high-dimensional traffic data and achieved faster convergence.
Researchers have utilized AI and IoT voice devices to advance sports training feature recognition, employing sensors for real-time data transmission and analysis. This approach successfully identifies movement patterns and predicts athlete states, enhancing training effectiveness.
Researchers introduced the Virtual Experience Toolkit (VET) in the journal Sensors, utilizing deep learning and computer vision for automated 3D scene virtualization in VR environments. VET employs advanced techniques like BundleFusion for reconstruction, semantic segmentation with O-CNN, and CAD retrieval via ScanNotate to enhance realism and immersion.
Researchers developed two physics-informed machine learning (PIML) models to predict the peak overpressure of ground-reflected explosion shockwaves, significantly improving accuracy over traditional methods. This innovation aids in structural design and explosion hazard assessment.
Researchers used AI models to analyze Flickr images from global protected areas, identifying cultural ecosystem services (CES) activities. Their study reveals distinct regional patterns and underscores the value of social media data for conservation management.
Researchers developed ORACLE, an advanced computer vision model utilizing YOLO architecture for automated bird detection and tracking from drone footage. Achieving a 91.89% mean average precision, ORACLE significantly enhances wildlife conservation by accurately identifying and monitoring avian species in dynamic environments.
Researchers reviewed deep learning (DL) techniques for drought prediction, highlighting the dominance of the standardized precipitation index (SPI), standardized precipitation evapotranspiration index (SPEI), and normalized difference vegetation index (NDVI). The study emphasizes the need for more research in America and Africa, suggesting opportunities for developing countries.
Researchers used a novel AI method combining RGB orthophotos and digital surface models to improve building footprint extraction from aerial and satellite images, achieving higher accuracy and efficiency.
Researchers introduced "DeepRFreg," a hybrid model combining deep neural networks and random forests, significantly enhancing particle identification (PID) in high-energy physics experiments. This innovation improves precision and reduces misidentification in particle detection.
Researchers reviewed AI advancements in electric power systems, highlighting its transformative potential due to modern microprocessors and data storage. The study categorizes AI applications into four areas and presents detailed case studies in wind power forecasting, smart grid security, and fault detection.
Researchers have developed an advanced machine learning model utilizing long short-term memory (LSTM) to improve the accuracy of predicting extreme rainfall events in Rwanda. This model offers significant insights for climate adaptation and disaster management, especially amid escalating severe weather conditions.
Terms
While we only use edited and approved content for Azthena
answers, it may on occasions provide incorrect responses.
Please confirm any data provided with the related suppliers or
authors. We do not provide medical advice, if you search for
medical information you must always consult a medical
professional before acting on any information provided.
Your questions, but not your email details will be shared with
OpenAI and retained for 30 days in accordance with their
privacy principles.
Please do not ask questions that use sensitive or confidential
information.
Read the full Terms & Conditions.