AI Analysis Helps Monitoring of Threatened Marbled Murrelets

Research by Oregon State University and the U.S. Forest Service has shown that artificial intelligence analysis of data gathered by acoustic recording devices is a promising new tool for monitoring the marbled murrelet and other secretive, hard-to-study species.

Study: Passive acoustic monitoring and convolutional neural networks facilitate high-resolution and broadscale monitoring of a threatened species. Image Credit: John Yunker / ShutterstockStudy: Passive acoustic monitoring and convolutional neural networks facilitate high-resolution and broadscale monitoring of a threatened species. Image Credit: John Yunker / Shutterstock

The threatened marbled murrelet is an iconic Pacific Northwest seabird closely related to puffins and murres. However, unlike those birds, murrelets raise their young as far as 60 miles inland in mature and old-growth forests.

"There are very few species like it," said co-author Matt Betts of the OSU College of Forestry. "And there's no other bird that feeds in the ocean and travels such long distances to inland nest sites. This behavior is super unusual and it makes studying this bird really challenging."

A research team led by Adam Duarte of the U.S. Forest Service's Pacific Northwest Research Station used data from acoustic recorders, which were initially placed to assist in monitoring northern spotted owl populations at thousands of locations in federally managed forests in the Oregon Coast Range and Washington's Olympic Peninsula.

Researchers developed a machine learning algorithm known as a convolutional neural network to mine the recordings for murrelet calls.

The findings, published in Ecological Indicators, were tested against known murrelet population data and determined to be correct at a rate exceeding 90%, meaning the recorders and AI can provide an accurate look at how many murrelets are calling in a given area.

"Next, we're testing whether murrelet sounds can actually predict reproduction and occupancy in the species, but that is still a few steps off," Betts said.

The dove-sized marbled murrelet spends most of its time in coastal waters eating krill, other invertebrates, and forage fish such as herring, anchovies, smelt, and capelin. If the nest is successful, murrelets can only produce one offspring per year, and their young require forage fish for proper growth and development.

The birds typically lay their single egg high in a tree on a horizontal limb at least 4 inches in diameter. Steller's jays, crows, and ravens are the main predators of murrelet nests.

Marbled murrelets are regularly found along the West Coast, from Santa Cruz, California, to the Aleutian Islands. The species is listed as threatened under the U.S. Endangered Species Act in Washington, Oregon, and California.

"The greatest number of detections in our study typically occurred where late-successional forest dominates, and nearer to ocean habitats," Duarte said.

Late-successional refers to mature and old-growth forests.

"Our results offer considerable promise for species distribution modeling and long-term population monitoring for rare species," Duarte said. "Monitoring that's far less labor intensive than nest searching via telemetry, ground-based nest searches or traditional audio/visual techniques."

Matthew Weldy of the College of Forestry, Zachary Ruff of the OSU College of Agricultural Sciences, and Jonathon Valente, a former Oregon State postdoctoral researcher now at the U.S. Geological Survey, joined Betts and Duarte in the study, along with Damon Lesmeister and Julianna Jenkins of the Forest Service.

The Forest Service, the Bureau of Land Management, and the National Park Service provided funding.

Source:
Journal reference:

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoAi.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Agora Protocol Tackles AI Communication Challenges with Scalable Autonomous Networks