MIT and IBM Teach AI To Recognize Your Pet in a Crowd

By training vision-language models to focus on contextual clues rather than memorized data, MIT and IBM scientists have made AI systems smarter at spotting personalized objects—paving the way for more adaptive and assistive technologies.

In-context personalized localization involves localizing object instances present in a scene (or query image) similar to the object presented as an in-context example. In this setting, the input to the model is a category name, in-context image, bounding box coordinates (not shown in this figure), and a query image. The model is tasked with localizing the same category of interest (presented as an in-context example) in the query image. Here, we visualize a few inputs and outputs from various VLMs highlighting that our fine-tuned model better captures the information in the in-context image.

*Important notice: arXiv publishes preliminary scientific reports that are not peer-reviewed and, therefore, should not be regarded as definitive, used to guide development decisions, or treated as established information in the field of artificial intelligence research.

Say a person takes their French Bulldog, Bowser, to the dog park. Identifying Bowser as he plays among the other canines is easy for the dog-owner to do while onsite.

But if someone wants to use a generative AI model like GPT-5 to monitor their pet while they are at work, the model could fail at this basic task. Vision-language models like GPT-5 often excel at recognizing general objects, like a dog, but they perform poorly at locating personalized objects, like Bowser the French Bulldog.

To address this shortcoming, researchers from MIT and the MIT-IBM Watson AI Lab have introduced a new training method that teaches vision-language models to localize personalized objects in a scene.

Their method uses carefully prepared video-tracking data in which the same object is tracked across multiple frames. They designed the dataset so the model must focus on contextual clues to identify the personalized object, rather than relying on knowledge it previously memorized.

When given a few example images showing a personalized object, like someone's pet, the retrained model is better able to identify the location of that same pet in a new image.

Models retrained with their method outperformed state-of-the-art systems at this task. Importantly, their technique leaves the rest of the model's general abilities intact.

This new approach could help future AI systems track specific objects across time, like a child's backpack, or localize objects of interest, such as a species of animal in ecological monitoring. It could also aid in the development of AI-driven assistive technologies that help visually impaired users find certain items in a room.

"Ultimately, we want these models to be able to learn from context, just like humans do. If a model can do this well, rather than retraining it for each new task, we could just provide a few examples and it would infer how to perform the task from that context. This is a very powerful ability," says Jehanzeb Mirza, an MIT postdoc and senior author of a paper on this technique.

Mirza is joined on the paper by co-lead authors Sivan Doveh, a graduate student at Weizmann Institute of Science; and Nimrod Shabtay, a researcher at IBM Research; James Glass, a senior research scientist and the head of the Spoken Language Systems Group in the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL); and others. The work will be presented at the International Conference on Computer Vision.

An unexpected shortcoming

Researchers have found that large language models (LLMs) can excel at learning from context. If they feed an LLM a few examples of a task, like addition problems, it can learn to answer new addition problems based on the context that has been provided.

A vision-language model (VLM) is essentially an LLM with a visual component connected to it, so the MIT researchers thought it would inherit the LLM's in-context learning capabilities. But this is not the case.

"The research community has not been able to find a black-and-white answer to this particular problem yet. The bottleneck could arise from the fact that some visual information is lost in the process of merging the two components together, but we just don't know," Mirza says.

The researchers set out to improve VLMs abilities to do in-context localization, which involves finding a specific object in a new image. They focused on the data used to retrain existing VLMs for a new task, a process called fine-tuning.

Typical fine-tuning data are gathered from random sources and depict collections of everyday objects. One image might contain cars parked on a street, while another includes a bouquet of flowers.

"There is no real coherence in these data, so the model never learns to recognize the same object in multiple images," he says.

To fix this problem, the researchers developed a new dataset by curating samples from existing video-tracking data. These data are video clips showing the same object moving through a scene, like a tiger walking across a grassland.

They cut frames from these videos and structured the dataset so each input would consist of multiple images showing the same object in different contexts, with example questions and answers about its location.

"By using multiple images of the same object in different contexts, we encourage the model to consistently localize that object of interest by focusing on the context," Mirza explains.

Forcing the focus

But the researchers found that VLMs tend to cheat. Instead of answering based on context clues, they will identify the object using knowledge gained during pretraining.

For instance, since the model already learned that an image of a tiger and the label "tiger" are correlated, it could identify the tiger crossing the grassland based on this pretrained knowledge, instead of inferring from context.

To solve this problem, the researchers used pseudo-names rather than actual object category names in the dataset. In this case, they changed the name of the tiger to "Charlie."

"It took us a while to figure out how to prevent the model from cheating. But we changed the game for the model. The model does not know that 'Charlie' can be a tiger, so it is forced to look at the context," he says.

The researchers also faced challenges in finding the best way to prepare the data. If the frames are too close together, the background would not change enough to provide data diversity.

In the end, finetuning VLMs with this new dataset improved accuracy at personalized localization by about 12 percent on average. When they included the dataset with pseudo-names, the performance gains reached 21 percent.

As model size increases, their technique leads to greater performance gains.

Looking ahead

In the future, the researchers want to study possible reasons VLMs don't inherit in-context learning capabilities from their base LLMs. In addition, they plan to explore additional mechanisms to improve the performance of a VLM without the need to retrain it with new data.

Additional co-authors are Wei Lin, a research associate at Johannes Kepler University; Eli Schwartz, a research scientist at IBM Research; Hilde Kuehne, professor of computer science at Tuebingen AI Center and an affiliated professor at the MIT-IBM Watson AI Lab; Raja Giryes, an associate professor at Tel Aviv University; Rogerio Feris, a principal scientist and manager at the MIT-IBM Watson AI Lab; Leonid Karlinsky, a principal research scientist at IBM Research; Assaf Arbelle, a senior research scientist at IBM Research; and Shimon Ullman, the Samy and Ruth Cohn Professor of Computer Science at the Weizmann Institute of Science.

This research was funded, in part, by the MIT-IBM Watson AI Lab.

*Important notice: arXiv publishes preliminary scientific reports that are not peer-reviewed and, therefore, should not be regarded as definitive, used to guide development decisions, or treated as established information in the field of artificial intelligence research.

Source:
Journal reference:
  • Preliminary scientific report. Doveh, S., Shabtay, N., Lin, W., Schwartz, E., Kuehne, H., Giryes, R., Feris, R., Karlinsky, L., Glass, J., Arbelle, A., Ullman, S., & Mirza, M. J. (2024). Teaching VLMs to Localize Specific Objects from In-context Examples. ArXiv. https://arxiv.org/abs/2411.13317

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of AZoAi.
Post a new comment
Post

Sign in to keep reading

We're committed to providing free access to quality science. By registering and providing insight into your preferences you're joining a community of over 1m science interested individuals and help us to provide you with insightful content whilst keeping our service free.

or

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
AI Tools Play Distinct Roles in Creativity: Study Maps How LLMs, T2I, and T2-3D Boost Design Innovation